Incremental Unsupervised-Learning of Appearance Manifold with View-Dependent Covariance Matrix for Face Recognition from Video Sequences
نویسندگان
چکیده
We propose an appearance manifold with view-dependent covariance matrix for face recognition from video sequences in two learning frameworks: the supervised-learning and the incremental unsupervisedlearning. The advantages of this method are, first, the appearance manifold with view-dependent covariance matrix model is robust to pose changes and is also noise invariant, since the embedded covariance matrices are calculated based on their poses in order to learn the samples’ distributions along the manifold. Moreover, the proposed incremental unsupervisedlearning framework is more realistic for real-world face recognition applications. It is obvious that it is difficult to collect large amounts of face sequences under complete poses (from left sideview to right sideview) for training. Here, an incremental unsupervised-learning framework allows us to train the system with the available initial sequences, and later update the system’s knowledge incrementally every time an unlabelled sequence is input. In addition, we also integrate the appearance manifold with view-dependent covariance matrix model with a pose estimation system for improving the classification accuracy and easily detecting sequences with overlapped poses for merging process in the incremental unsupervisedlearning framework. The experimental results showed that, in both frameworks, the proposed appearance manifold with view-dependent covariance matrix method could recognize faces from video sequences accurately. key words: appearance manifold, view-dependent covariance matrix, incremental learning, video-based face recognition, eigenspace
منابع مشابه
3D Object and Human Face Recognition using Appearance Manifold with View-dependent Covariance Matrix
This thesis addresses the problem of recognizing 3D objects and human faces from still-images and video-sequences. Here, the recognition problem is formulated as an appearance matching process. In the appearance-based approach, an object is represented in the form of two-dimensional image sets. To gain efficiency, these images are then projected into a low dimensional space in which the images ...
متن کاملConstruction of Appearance Manifold with Embedded View-Dependent Covariance Matrix for 3D Object Recognition
We propose the construction of an appearance manifold with embedded view-dependent covariance matrix to recognize 3D objects which are influenced by geometric distortions and quality degradation effects. The appearance manifold is used to capture the pose variability, while the covariance matrix is used to learn the distribution of samples for gaining noise-invariance. However, since the appear...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملAppearance Manifold with Covariance Matrix for 3-D Object Recognition
The authors present a robust 3-D object recognition system for recognizing noisy images. Since a recognition system usually deals with objects taken from various viewpoints, their appearance will vary from one viewpoint to another. Generally, the appearance of an object changes along with the changes of image conditions, and so does its position in the eigenspace. Such changes may cause an inac...
متن کاملبهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 92-D شماره
صفحات -
تاریخ انتشار 2009